Extensions 1→N→G→Q→1 with N=C4oD4 and Q=C22

Direct product G=NxQ with N=C4oD4 and Q=C22
dρLabelID
C22xC4oD432C2^2xC4oD464,263

Semidirect products G=N:Q with N=C4oD4 and Q=C22
extensionφ:Q→Out NdρLabelID
C4oD4:1C22 = D4oD8φ: C22/C1C22 ⊆ Out C4oD4164+C4oD4:1C2^264,257
C4oD4:2C22 = D4oSD16φ: C22/C1C22 ⊆ Out C4oD4164C4oD4:2C2^264,258
C4oD4:3C22 = C2xC4oD8φ: C22/C2C2 ⊆ Out C4oD432C4oD4:3C2^264,253
C4oD4:4C22 = C2xC8:C22φ: C22/C2C2 ⊆ Out C4oD416C4oD4:4C2^264,254
C4oD4:5C22 = D8:C22φ: C22/C2C2 ⊆ Out C4oD4164C4oD4:5C2^264,256
C4oD4:6C22 = C2x2+ 1+4φ: C22/C2C2 ⊆ Out C4oD416C4oD4:6C2^264,264
C4oD4:7C22 = C2x2- 1+4φ: C22/C2C2 ⊆ Out C4oD432C4oD4:7C2^264,265
C4oD4:8C22 = C2.C25φ: C22/C2C2 ⊆ Out C4oD4164C4oD4:8C2^264,266

Non-split extensions G=N.Q with N=C4oD4 and Q=C22
extensionφ:Q→Out NdρLabelID
C4oD4.1C22 = D4:4D4φ: C22/C1C22 ⊆ Out C4oD484+C4oD4.1C2^264,134
C4oD4.2C22 = D4.8D4φ: C22/C1C22 ⊆ Out C4oD4164C4oD4.2C2^264,135
C4oD4.3C22 = D4.9D4φ: C22/C1C22 ⊆ Out C4oD4164C4oD4.3C2^264,136
C4oD4.4C22 = D4.10D4φ: C22/C1C22 ⊆ Out C4oD4164-C4oD4.4C2^264,137
C4oD4.5C22 = C2xC4wrC2φ: C22/C2C2 ⊆ Out C4oD416C4oD4.5C2^264,101
C4oD4.6C22 = C42:C22φ: C22/C2C2 ⊆ Out C4oD4164C4oD4.6C2^264,102
C4oD4.7C22 = C8oD8φ: C22/C2C2 ⊆ Out C4oD4162C4oD4.7C2^264,124
C4oD4.8C22 = C8.26D4φ: C22/C2C2 ⊆ Out C4oD4164C4oD4.8C2^264,125
C4oD4.9C22 = D4.3D4φ: C22/C2C2 ⊆ Out C4oD4164C4oD4.9C2^264,152
C4oD4.10C22 = D4.4D4φ: C22/C2C2 ⊆ Out C4oD4164+C4oD4.10C2^264,153
C4oD4.11C22 = D4.5D4φ: C22/C2C2 ⊆ Out C4oD4324-C4oD4.11C2^264,154
C4oD4.12C22 = C2xC8.C22φ: C22/C2C2 ⊆ Out C4oD432C4oD4.12C2^264,255
C4oD4.13C22 = Q8oD8φ: C22/C2C2 ⊆ Out C4oD4324-C4oD4.13C2^264,259
C4oD4.14C22 = C2xC8oD4φ: trivial image32C4oD4.14C2^264,248
C4oD4.15C22 = Q8oM4(2)φ: trivial image164C4oD4.15C2^264,249

׿
x
:
Z
F
o
wr
Q
<